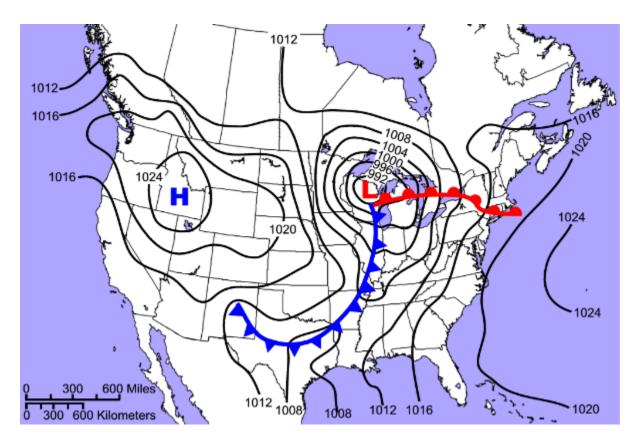
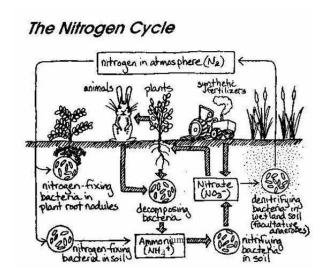

## ST Pretest 2.2


1. Use the diagram to explain why the Hadley cell exists.

2. a) Predict the resulting direction of the wind






- 3. a) What is the most powerful greenhouse gas?
  - b) Which fossil fuel derived greenhouse gas has become a major pollutant?
  - c) How can carbon dioxide be filtered?
  - d) When you compare a greenhouse to the actual atmosphere, why is glass like the greenhouse gases?



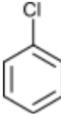
- a) Idaho is having the most beautiful weather today. Locate Idaho based on the weather map, not on your knowledge of US geography.
- b) Which Canadian province is having the rainiest weather. Why?
- c) What large American state is experiencing thunderstorms?
- d) If there is a large warm air mass south of the 1008 isobar, what is on the other side of the triangular boundary?
- e) What kind of rain and clouds would you see along the triangular boundary?
- f) Which moves faster? A warm front? Or a cold front?
- g) In which direction do the winds of a low pressure system in North America blow?
- h) Which provinces are closest to the Maritime polar air mass?

- 5. a) What kind of plants have nitrogen-fixing nodules in their roots?
- b) Why can't plants use the nitrogen directly from the air?
- c) What is the role of denitrifying bacteria?
- d) How is the rabbit contributing to the N-cycle?
- e) Explain runoff.



### 6. Flashback.

Complete the table.


| Element  | Chemical<br>Symbol | Atomic<br>Number | Number of<br>Protons | Number of electrons in neutral atom |                                   |
|----------|--------------------|------------------|----------------------|-------------------------------------|-----------------------------------|
| nitrogen |                    |                  |                      |                                     | Charge, if you add 3 electrons=   |
| sulfur   |                    |                  |                      |                                     | Charge, if you add 2 electrons=   |
| sodium   |                    |                  |                      |                                     | Charge, if you remove 1 electron= |
| hydrogen |                    |                  |                      |                                     | Charge, if you remove 1 electron= |

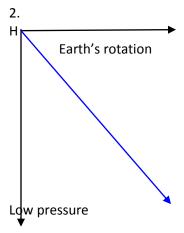
# Pretest 2.2 STE PART

- 1. What is the concentration of a solution consisting of 5.85 grams of sodium chloride dissolved in 100.0 ml of solution?
- 2. What volume of 0.50M KOH<sub>(aq)</sub> will react with 200 ml of a 3.0 moles/L solution of H<sub>2</sub>SO<sub>4</sub>?

$$2 \text{ KOH} + \text{H}_2\text{SO}_4 --> 2 \text{ H}_2\text{O} + \text{K}_2\text{SO}_4$$

- 3. How much water has to be added to a 20.0 ml solution of 0.10 M KBr in order to create a 0.010 M solution?
- 4. When do we use the PTA technique instead of the WDTA?




5. This is a skeleton structure of  $C_6H_5Cl$ . Use it a guideline to draw a Lewis

structure.

- 6. In a nuclear reaction, is it possible for
- a) Mass not to be conserved?
- b) For neutrons to turn into protons and beta particles?
- c) For protons to capture beta particles?
- d) For gamma rays to be absorbed?
- e) For neutrons to be absorbed by the nucleus?

#### **ST ANSWERS**

1. Areas closer to the equator receive more direct sunlight. This warms the air. As its density decreases it rises. Cooling causes condensation and then close to the  $30_{\circ}$  latitude, drier air sinks .



- 3. a) water
- b) carbon dioxide
- c) Use a substance like rock or sodium hydroxide that can react with carbon dioxide.
- d) They are both transparent to visible light and both can absorb infrared= heat (not let it out )
- 4. a) It's in the West, where the H is (high pressure center)
- b) Ontario. It's closest to the low pressure system and the associated cold and warm fronts.
- c) Texas
- d) a *moving* cold air mass. In a cold front, the cold mass moves towards warm air. In a warm front the opposite is true.
- e) Thunderstorms
- f) A cold front moves faster.
- g) Clockwise
- h) Maritimes: Newfoundland, Nova Scotia, P.E.I., New Brunswick
- 5. a) legumes
  - b) Not reactive enough
  - c) Return nitrogen to the air
  - d) its urine and wastes have nitrogen-containing wastes
  - e) If there's too much nitrogen in the soil, it gets washed away and it pollutes lakes and rivers

# Flashback

Complete the following table:

| Element  | U  | nical Symbol | Atomic Number | Number of Protons | Number of electrons in                                   |
|----------|----|--------------|---------------|-------------------|----------------------------------------------------------|
| nitrogen | N  | 7            | 7             | 7                 | neutral atom<br>Charge, if you<br>add 3                  |
| sulfur   | S  | 16           | 16            | 16                | electrons=-3<br>Charge, if you<br>add 2                  |
| sodium   | Na | 11           | 11            | 11                | electrons=-2<br>Charge, if you<br>remove 1               |
| hydrogen | Н  | 1            | 1             | 1                 | electron=+1<br>Charge, if you<br>remove 1<br>electron=+1 |

## **ANSWERS to STE**

- 5.85 g/(58.5 g/mole) = 0.10 moles NaCl
  C = n/V = 0.10/(100/1000) = 1.0 mole/L
- 2. n = CV for acid 0.200L\*3.0 mol/L = 0.6 mol  $H_2SO_4$  0.6 mol  $H_2SO_4$  (2 KOH/  $H_2SO_4$ ) = 1.2 mole KOH n = CV for base 1.2 mole KOH = 0.50 mole/L (V) V = 1.2/0.50 = 2.4 L
- 3.  $C_1V_1 = C_2V_2$   $0.10(0.020) = 0.010 V_2$  $V_2 = 0.200 L = 200 ml$

So you have to add 200 ml - 20 ml = 180 ml of water.

4. PTA is for dilution of a an already prepared aqueous solution. WDTA is for preparing an aqueous solution starting with a solid solute.

6. yes to all!